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I. INTRODUCTION 

Applications of the group theory constructions remains not broadly used yet in the kinetic theory, as it deserves 
to be'-1'2-'. In the paper, the new opportunities and advantages that the parameterization of two-particle collisions by a 
matrix from the group of rotations can provide are shown.   Usually, to construct the   collision integral in the 

Boltzmann kinetic equation a collision of two particles is determined by setting a direction (n,n   = 1) of the 
relative velocity vector of the particles after the collision' . 

/»V + H+V-HB 
V   =- 

\ + m 

mv + u - m\v - u\n 

\ + m 

m. 
where m = —-,    V = V - U ; (1) 

m-, 

In the paper we offer to construct the collision integral using a parameterization of a scattering by a rotation matrix 

RG 03 which is determined by Euler's angles <p,9 ,\j/[4\ 
In this case, the transformation of the velocities due to a collision in contrast to case (1), becomes a linear one: 

, _ mv + u + R(v-u)       , _mv + u- mR(v- u) 
V  — .    u  — 

\ + m \ + m 
(2) 

and is representing by scattering matrix5* a partitioned matrix (2x2 cells). The size of each cell obviously is 
(3x3): 

5   =S£,    5 
fv\ 

u 
\   J 

S = 

m + R l-R ^ 

1 + m        1 + m 
m(\-R)    1 + mR 

1 + OT \ + m 

(3) 

Also in contrast to (1), that linear transformation due to det 5=1 provides the equality of velocity volumes 

dvdu = dv'du (4). 

The matrixes S(R) ,Re03 constitute a group: S(R,) ■ S(R2 ) = S(R, -R2), S~l(R) = S(R~l) . 
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II. THE COLLISION INTEGRAL 

To    write     the     collision    integral    the     integration    over    relative    velocity    directions     should    be 

cdQ.        p dR ~       ~ ~       —        ~_] 
replaced >     — with integration on the invariant ( dR = dRnR = dRRn = dR    ) measure™ over the 

J   An J 167T2 

group 03: dR = dy/d(psin Odd,    0 <y/,0,(p< In ,  \dR = 1Ö7T2. As a result, we get the collision integral 

written in an explicitly invariant and simple form: 

I(f,V) = I(F)= \b(v,R)[f(v'mu')- f(vmu)]—du= \b(v,R^ J An        J An 

where b\V,Rj — V(7e \V,[1\R}} is a scattering indicatrix,  fl[Rj = — — cosine of the scattering angle, 

F(t) = foW{E,J — f(v)W(u)  is a two-particle velocity distribution function. Taking into consideration that 

8(v —V0)8(w —U0) = B{SC) — C)0) = B\^) — S{R   )^0J we have decomposition formula for 8 -functions: 

l(ö(v-v0)Mu-u0)) = im-^))=\^b(v0,R\ö(v-v'0)-ö(v-v0)l 

And similar for Maxwellians: 

(6) 

IifM(y-V0\
x¥M(u-U0)) = f ^—Pr (v» «o »^)/JI# (v - vo )- *r (v» "o» ^)/JI/ (v ~ vo)J. (7) 

•> An 

where bT[y,u0,R) = \b[v,RfVM(u-u0)du. 

At the zero temperature limit we obtain the asymptotic equality similar to property (6): 

For Maxwell's molecules (and asymptotically in the limit T —> 0 in the general case) those two decompositions 
coincide. In the case of the Maxwell molecules the indicatrix b does not depend on a velocity and consequently 
equality (8) is satisfied at all temperatures and is a corollary of the invariance of the collision operator with constant 
collision frequency with respect to Gauss transformation^ : 

/     kT, 

e2n"    /(/,VF) = / 
1LV2        \ 

f,eZnh    V (9) 

where 

e2m 7(v) = 
(   m   Y 

2nkT 

m(v-v') 

\dv'e^^f{v'\ V2 = — 1 V2 = » v u —1 
ydUJ 



III. THE COLLISION INTEGRAL FOR DISCRETE MODELS 

The form of collision operator obtained above is very useful in an application to the discrete models[5_9]. An explicit 
expression for the collision integral suitable for the discrete models can be constructed, if we replace in collision 

integral (5) the averaging over rotations from group of rotations 03 with an averaging over its discrete subgroup 

consisting of finite number^ elements ( 
dR        1 

—>- 
\6nz      K 

1^): 
(10) 

An 

K -      k=i 
(/^) = ^J^£ö(v^J/(vO^(«0-/(v)lF(«)] = ^J^i:6(v'^li7fe^)-i7©] 

An 

The expressions given by formulae (6) and (8) in this case are reduced to the finite sums: 

An IÄs(v-v0)8(u-uQ)) = — ^b(yQ,Rk\S{v-v'Q)-S(y-vQ)], 
K j.=1 

and 

An 

(11) 

^(/M("-"o)f«("-«o)L=vI6(V»'^I/«(,'",'^^(,'",;»)]+0^' {12) 

Formulae (11) and (12) give an explicit representation of the collision terms in the set of equations for discrete gas 
models, which can be obtained from the initial Boltzmann kinetic equations after a substitution of distribution 
functions in them in a form of an expansion on delta-functions or on Maxwell velocity clusters. 

IV. SCATTERING VARIABLES AND AN INVARIANT ENSEMBLE OF PAIRS OF 
DISCRETE VELOCITIES. 

A state of a pair of colliding particles in the kinetic theory is usually characterized by particle velocities V and 
U. The state also can be uniquely characterized by other variables that are linear combinations of the velocities V 
and U and which transform in collisions much simpler. It is convenient to choose variables p and W as such 

scattering variables. The variable W is a center of masses velocity, and p is a momentum of the first particle in a 

center of masses frame of reference. Formulae of transformation from a variables V , U to variables p ,W and 

back look as follows: 

'P^ 

KWJ 

= A- 
^ 

v"y 
A=—,—A- 

ml +m2 

1 

m, m. 

■1 

-i 

^ 

v"y 
= A~ 

'P^ 

KWJ 

AA = 
m, 1 

-m,     1 
V       2        / 

(13) 

The matrix of scattering in the variables p, W becomes cell-diagonal. In fact, a velocity of a center of masses after 

collision does not change (W = W ) and the momentum  p  is rotating by a rotation matrix R ,    p = Rp. 
Consequently, the matrix of scattering in these variables has a form: 

SA = ASA'1 = 
rR    ^ 

0    1 
(14) 



If we will consider a model of gas in which not all possible scatterings in a pair of colliding particles 

happen, but only related to rotation matrixes RE 03\K) C 03 from some discrete subgroup 03\K) containing 

K elements, it is possible to construct an ensemble of pairs of discrete velocities, that transforms into itself by the 
collision transformations. There are several ways to construct such ensembles. We consider purely lattice way. In 
this case the velocity of a center of masses is given by an integer linear combination of the basis vectors of a lattice 
M>,, M>2, M>3,  and the  momentum  of the  first particle  is  given by  a  linear  superposition  of the  vectors 

tn0 Wl, tn0W2, tn0 W3 with integer coefficients. A set of six integer numbers lx,l2,l3,kx,k2,k3will be 
coordinates of velocity pairs: 

p{k,h,h)=km(jwl +l2m0w2 + l3m0w3, 

w(k],k2,k3) = k]w] +k2w2 + k3w3. 
(15) 

For discrete velocities in accordance to (13) one will have: 

Va ~ Va\h>h>h>'ix,k2,k.i) - wl + w2 + 
f \ 

l~,   ~T" K-j 

V      a J 

K e A*; 

V B \    'p   '2 '   i3,ki,K2,k3)E. La ,     /j, l2 ,l3, /C], K2 ,/C3 — U,± 1,± 2,..., 

W„ 

m„ 
-IR + L   H>, + 

( mn 
-LR + k-,   if, + 

m„. 

( m„ 

m„. 

(16) 

l3R + k3  w3, uoß = v'ß(-/,,-L -l3X,k2,k3 

The vectors Wi,W2,W3 are basic vectors of the Bravais lattice invariant regarding a discrete subgroup of rotations 
(the point groups), 

RWi=^wkTki(R), (17) 

where Tki\R) are unimodular matrixes with integer matrix elements. In the theory of crystals^10'11'known that there 
are      14      types      of     the      Bravais      lattices      and      7      point      symmetry      groups      of     these 
lattices: S2,C2h,D2h,D3h,D4li,D6h,Oh corresponding to 7 syngonies (triclinic, monoclinic, rhombic, trigonal, 
tetragonal, hexagonal, cubic). These 7 groups have 32 point subgroups. The only group not having a preferential 
direction and consequently the most appropriate one for our purposes is the   Oh  group. That is the group of 
symmetry of a cube (isomorphic to the group of  symmetry of an oclahedron) is consisting of 48 elements. Its 
subgroups without a preferential direction are: the group of proper rotations of a cube   0(24), the group of 

symmetry of a tetrahedron Td (24) , the group of proper rotations of a tetrahedron T(\2) and the Th (24) group of 

proper rotations of a tetrahedron with an inversion added. The number of elements in these groups is indicated in 
brackets. For plane Bravais lattices there are only 10 point groups of symmetry: Cl,C2,C3,C4,C6 that are the 
groups of rotations around axes of the 1-st, 2-nd, 3-rd,    4-th and 6-th order (angles of rotations in the groups are 

K K 
divisible by either —, or —) and the groups Dt,D2,D3, D4, D6 that are the groups of rotations Cn with a 

reflection in an axis lying in a plane of the lattice. For a one-dimensional lattice, obviously, there are only two 
groups. Those are the identical transformation E and the group with a reflection \E— E\. The fact of necessity of 
a rational masses ratio has been discovered and first lattices of discrete velocities for a mixture of gases have been 
constructed in paper[8], paper[9] is devoted to spurious invariants in discrete models. 



Presenting velocity distribution functions fa\V) by the expansions on Dirac delta-functions concentrated 

on the velocities of the discrete sets La , 

/«(") = ^f{v0)S{v-v0), (18) 

and two-particle distribution functions of a pair of colliding particles of the sorts CC and ß by the expansions on 

Dirac delta-functions concentrated on bivectors from the invariant ensembles Laß , 

faß(Z)=   ^Zfa{v0)fß{u0)5{v-V0)5{u-U0), (19) 

we obtain an   analog of the Boltzmann equation for discrete models for gas mixtures of M components in the 
following explicit form: 

d/a("o)   ,  ..      3/o(v0)      V V AK 

"0 X       X       ^%bc$(v>Rklfa{K)fß{«o)-fa{vo)fß{«o)\ 
* 3r ^{4M^}^H (20) 

v0eLa;    a,ß = l,...M. 

Where La are sets o f discrete velocities V0a for each mixture component depend only on the mass ma; La„ are sets 

of colliding pairs \V0a, W0» J eL; Mis number of mixture components. The definition 

| M01 v0, M0 J e Lag J = Z/„ (v0 ) means a set of all W0 for which the pair (V0, M0 J with the given V0 is contained 

in the invariant ensemble Lga . 

V. EXAMPLE OF DISCRETE VELOCITY MODEL CONSTRUCTED ON THE GROUP 
OF SYMMETRY OF A CUBE Oh 

Rotation on angle B around axis B is given by formula: 

"     l-cos5 "2    sin 5 -    . 
expB = —B  + 5 + 1 (21) 

B2 B 

where the operator (matrix) B is defined by the following expression: 

*df ~   df 
B=Bx ,      Bv=BXV; (22) 

We will describe nontrivial rotations from the group O by vectors Bi,... B13 . Rotation on the zero angle (trivial 

rotation) is the unity transformation E : 

B0=0,       exp(ß0)=E (23) 



Symmetry of a cube includes three forth odder axises coming though centers of opposite faces of a cube (9 nontrivial 
rotations): 

M,..,,=±|(1A0), +1(0,1,0), +1(0,0,1),   T(1,0,0),   ;T(0,1,0),   /r(0,0,l), 

four third odder axises coming though opposite corners of the cube (8 nontrivial rotations): 

(24) 

Mo,..,7=± 
2x 

V3      V3   V3 
(25) 

and six second order axises coming through centers of opposite edges of the cub (6 nontrivial rotations): 

M, 18,...23 = n L  ±1    1 
0, 

V2' V2 

( 
, n 

V2' 'V2 
, 7T 

r ±1 _L 
V2'V2 

,0 (26) 

One can obtain the group of all transformations of symmetry of a cube Oh by adding the inversion transformation 

( — E) to the group O . All 48 elements of the group can be written making use of definitions (21)— (26) as 

{R}Ok={±exp(Bn),n = 0,\,...,23}. (27) 

There are three Bravais lattices (cubic system), which are invariant under transformations from group Oh . The first 

one is the simple cubic lattice Yc. Sites ofthat lattice are situated in corners of identical cubes: 

w(kl ,k2,k2)- klwl+k2w2 + k2w2, kl,k2 k2 -0,±l,±2 :::, 

where vectors of elementary periods are 

w, = (1,0,0), w2 = (0,1,0), w3 = (0,0,1)   . (28) 

The body centered cubic lattice T^is a lattice with sites, which are situated in vertices of cubs, and in its centers. 
Vectors of elementary periods of the lattice are three vectors from a center of the cube to any three vertices. One of 
the possible variants is: 

Mi   O 
2 '2' 2 , _ '2' _, 

(\ -1 n      (\  1  -o 
i    H>3 = 

2     2   2 2    2     2 
(29) 

A face-centered lattice Tc is a lattice with sites situated in corners of cubes and in centers of faces. Vectors of 
elementary periods of the lattice are three vectors from any corner of a cube to centers of three faces. One of the 
possible variants is: 

(    1     1A 

0,-, - 
2    2 

\       1A 

-,0,- 
2       2 

\    1      A 

-, -, 0 
2    2 

(30) 



Here we will describe characteristics of discrete velocity models constructed on simple cubic lattice (28). 
Substituting elementary periods of this lattice (28) to (16) one will have a relevant discrete velocity model. For 
discrete velocities components we will have the following expressions: 

-/,+£,;     vv -L +k?; 
m, m, 

m„ 

m, 
" /-,   T /C-> , 

U „  —: /1  ™T" /Ci , tl     —: L j    \   rCj , U 7  —
: L -,    \   rC-,, 

m, m-, m, 
(31) 

where ki,k1,ki — 0,+ l,... + km ;     /, ,/2,/3 = 0,+ l,... + /m . It is seen from (31) that discrete velocity sets for 

components vx,v ,V7are the same independent sets. To have a number of different discrete velocities less then 

number of collisions (bivectors from invariant ensemble)   and  should be rational numbers: 
mQ mQ 

m0     qx '     m0      q2 ' 

where pu p2, q3, q4 are integer numbers and at list the following inequalities should be held 

(32) 

2^+1^JPl>/V2£m+
1^l>42 (33) 

P li- 
To obtain all different discrete velocities of particles with mass m one should take indexes / and k in the 

q 
range: 

l = -L>-{-L+PY>    k = -k,n,-k,n     and     l = {-lm+p+l),...lm;    k = {km-q),...km 

1 

P 
(34) 

P. Total number of different discrete velocities v   for particles with mass in = —will be: 
q 

N, 

N, 

q 

(p} 
q 

= p{2km+l) + q{2lm+l)-pq, 

= {2Jm + lX2km+l), 

q<2km+\, p<2lm+\ 

(35) 

q>2km+l  or p > 21   + 1 

For illustration we here consider the specific gas mixture consisting of Ne{20), NO{30 ) and Ar (40 ) gases. The 

relevant discrete model has the following parameters: 

L=km=5'     m0=20; px=\, qx=\;    p2 = 3, q2 = 2■    p3 = 2, q3 = 1; (36) 

For one-dimensional case (v   = V7 =0) according to (35) the number of different velocities for each gas 

component of the mixture will be: 



N 
fr 

= 21, N 
v2J 

= 49, TV 
r2 
v1/ 

= 31 (37) 

The number of effective collisions (the number of bevectors from invariant ensemble with nonzero relative 

velocity, lx ^ 0) for each two gases of the mixture is 

and 

Nc=21mx(2km+l) = U0 (38) 

N>   2N T N + N T 
l2J N + N ,   2TV '2' 

l2J TV '2' 
l2J + N 

r2 

I1/ ,   2TV 

f2 

I1/ (39) 

110 >(2x21 = 42), (21 + 49 = 70 ), (21+ 31 = 52),(2x49 =98), (49 +31 = 80), (2x31 = 62) 

Due to inequalities (39) this discrete model do not has spurious invariants. 

The two dimensional (vz = 0) model with lm = km =3 has the following characteristics: 

l,n=k,n=3->    m0=20,     Pl=\, qx=\-,   p2 = 3, q2 = 2 ;   Pj = 2, qz = 1; (40) 

N 
v1/ 

/^^ 
169, TV 

v2/ 

^\ 
841, TV 

V1/ 
361; /Ve = [(2/m+l)2-ljx(2^ + l)2=2352 

And calculated in the same way there are characteristics of the full three dimensional discrete model: 

l,n=k,n=2>     m0=20,     Pl=\, qx=\-,   p2=3, g2=2;   p3=2, q3=l; (41) 

N 

v1/ 

/^^ 
729, /V 

V2/ 

^\ 
6859, /V 

V1/ 
2197 ;       Nc = [(2/m +lf-l\x{2km +l)3 =15500 
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